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Questions to answerQuestions to answer

What is the Tate pairing?
What types of elliptic curves can be used to calculate 
pairings?
How can we calculate pairings faster?
What is the ate pairing?
What are the security implications for this?



2

3

PairingsPairings

A special function called a pairing is needed to implement most 
IBE algorithms
The benefits of IBE don’t come for free – pairings are more 
expensive (computationally) that operations that are used in 
other traditional public-key algorithms
Best optimized pairing is roughly comparable to an RSA 
decryption (within roughly 20 percent)
Research is finding new ways to optimize pairing calculations, 
but there’s still work to do
The security implications of the optimizations are still not fully 
understood

Some require special structure which an attacker might or might not 
be able to take advantage of
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Structures usedand notation summaryStructures usedand notation summary

Finite field
Can add and multiply
If q is a prime number and k is a positive integer, there is 
only one finite field with qk elements which we write GF(qk)

• Example: GF(7) = {0,1,2,3,4,5,6}
• For k > 1 this gives us a way to multiply and divide vectors

Multiplicative group of a finite field
Non-zero points in a finite field that we can multiply which we 
write as GF(qk)* 
Example GF(7)* = {1,2,3,4,5,6}
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Structures usedand notation summaryStructures usedand notation summary

Elliptic curve group
Points on an elliptic curve E: y2 = x3 + ax + b that 
we can add using the usual connect-the-dots 
method
If the coefficients a and b of the elliptic curve E are 
from GF(qk) we write E(GF(qk)) for this
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Bilinear mappingsBilinear mappings

e:G1×G2→GT
First input comes from G1
Second input comes from G2
Output is in GT 
So we might write g = e(P,Q)

Usually think of G1 and G2 being elliptic curve groups 
so we write the operation there as addition

P3 = P1 + P2

Usually think of GT as being in GF(qk)* so we write 
the operation there as multiplication

g3 = g1×g2 = g1g2
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BilinearityBilinearity

A function e is bilinear if it’s linear in both inputs
e(aP,Q)=e(P,Q)a

e(P,bQ)=e(P,Q)b

Can combine to get e(aP,bQ)=e(P,Q)ab

Can pull constants out of either input
Note that we’re writing some operations like they’re 
addition and others as if they’re multiplication

Addition in an elliptic curve group
Multiplication in a finite field

8

PairingsPairings

Just being bilinear isn’t enough
f(x,y) = 1 is bilinear but not very interesting or useful
The trace map of GF(qk) over GF(q) is bilinear but 
tricky to compute
A mapping which is bilinear, non-degenerate and 
efficiently-computable is called a pairing

A “useful” bilinear mapping
A very useful pairing is the Tate pairing

First cryptographic use was actually to attack elliptic curve 
systems (MOV reduction, 1993)
Now it’s been rehabilitated



5

9

Calculating the Tate pairingCalculating the Tate pairing

Idea: to calculate e(P,Q), do the following:
Find a rational function that’s defined by P
Evaluate this function at Q

If the point P is of order p, we can get the Tate 
pairing like this:

f = 1
for i = 1 to p
f = f * fi(Q) // we get fi from iP

end for
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Miller’s algorithmMiller’s algorithm

For cryptographic uses, p is typically 2160 or greater
Iterating from 1 to 2160 will take essentially forever

We can also calculate the Tate pairing using a 
double-and-add technique

Iterate over the binary expansion of p
• Repeatedly double
• Add when the bit of p that we’re at is a ‘1’
• Accumulate the factors of the rational function as we do

Loop 160 times instead of 2160

This gives us Miller’s algorithm (1986)
A straightforward implementation is fairly slow
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Making Miller’s algorithm fasterMaking Miller’s algorithm faster

It’s possible to speed up Miller’s algorithm using a number of 
computational tricks
Some of these require the creation of pairings that are much like 
the Tate pairing

The ate pairing is the most important
Shorter version of “Tate”

If e(P,Q) is the Tate pairing, the ate pairing calculates e(P,Q)r for 
some integer r
This requires special structure
This structure lets you decrease the length of the loop in Miller’s 
algorithm 
This structure may or may not make its use cryptographically 
weak (probably not)
More research is probably needed in this area
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Embedding degreeEmbedding degree

Because we need to multiply to calculate it, the Tate pairing 
requires calculations to be done in a field
We can only add in G1

We want to be able to multiply to implement Miller’s algorithm
Solution: embed G1in GF(qk)* where multiplication is defined
The embedding degree (MOV degree) k is the degree of the 
extension field where we can do this

This means that we have vectors with k components, each one 
an element of GF(q)
We need for k to be relatively small to make this practical
Most elliptic curve groups have embedding degrees that are 
much too big

Roughly the same as the order of G1
Ouch: |G1| = 2160 means roughly 2160 coordinates
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Low embedding degreeLow embedding degree

Not many elliptic curves give us groups with a low embedding 
degree 
A few types that do:

Supersingular curves (k = 1, 2, 3, 4, 6) 
• k = 2 the most useful
• y2 = x3 + 1; q ≡ 2 mod 3 (easier to hash to point)
• y2 = x3 + x; q ≡ 1 mod 3 (faster pairing calculation)

MNT curves (k = 3, 4, 6)
BN curves (k = 12)

A low embedding degree makes a MOV attack possible
If calculating a pairing is feasible then an MOV attack is also 
feasible

So we need to account for this when we pick parameters
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MOV attackMOV attack

Suppose that we want to find the discrete logarithm of aP
Suppose that we have a pairing e that we can use
Say e(P,Q) = g
Note that e(aP,Q) = e(P,Q)a = ga

We can find the discrete log a from either aP or ga

aP might be in elliptic curve group and ga in a finite field 
Embedding degree k = 2 for E(GF(q)) means that we can calculate 
discrete logs in GF(q2)*

• Index calculus with 320 bits (weak) instead of Pollard’s rho with 160 
bits (strong)
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MOV attackMOV attack

If you can implement a pairing, you can do an MOV 
attack
You need to pick parameters so that this doesn’t 
matter
In the previous example we could calculate discrete 
logs in either GF(qk)* of order 2320 or a group G1of 
order 2160

If we make q big enough so that the GF(qk)* has 
order 21024, we’re done

512-bit q instead of 160-bit q
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Security considerationsSecurity considerations

With supersingular curves, the embedding degree is 
always low (k ≤ 6)

This has been fairly well studied
But they certainly “sound weak,” don’t they?
Bad reputation because of MOV attack

With ordinary curves, additional structure is needed 
to get a low embedding degree

This has not been well studied
More research is needed

The conservative choice for implementing a pairing-
based algorithm is to use a supersingular curve
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Underlying computational problemsUnderlying computational problems

Diffie-Hellman problem
Given g, ga, gb, find gab

We assume that we need to calculate discrete log of either 
ga or gb to do this

Bilinear Diffie-Hellman problem
Given P, aP, bP, cP, find e(P,P)abc

Note that we can also calculate e(P,aP) = ga (also gb, gc)
We assume that we need to calculate the discrete logs of 
aP, bP, cP, ga, gb, gc to do this
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Picking parametersPicking parameters

To attack IBE systems with a pairing e:G1×G2→GT whose 
security depends on the bilinear Diffie-Hellman problem, we 
assume that you need to calculate a discrete log in G1, G2, or GT

Just like we assume that calculating discrete logs is the only way to 
solve the Diffie-Hellman problem

G1 and G2 are easy to understand if they’re elliptic curve groups 
of prime order

Just look at SP 800-57 to see how big they need to be for a 
particular security level

GT is slightly more complicated 
It’s the same order as G1 and G2, but it’s in a finite field
We can find discrete logs in GT in two different ways
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Security in GTSecurity in GT

If e:G1×G2→GT is a pairing, the output is in GF(qk)* 
We can calculate discrete logs in GT in two ways

Pollard’s rho in GT

Index calculus in GF(qk)* 

We need to pick parameters so that both of these are 
difficult enough

Just like with Diffie-Hellman with GF(p) replaced by GF(qk)
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Parameter sizesParameter sizes

Example: 80 bits of security
Need  p = |G1| ≥ 2160

Need |GF(qk)*| ≥ 21024 or |GF(q)*| ≥ 21024/k

If k = 2, need 512-bit q (1024 = 2 × 512)
• A supersingular curve can be used to implement this

If k = 6, need 171-bit q (rounded up from 1024 / 6 
= 170.67) and |GF(qk)*| = 21026 (6 x 171 = 1026)

• An MNT curve can be used to implement this
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Parameter sizesParameter sizes

Example: 128 bits of security
|G1| ≥ 2256, need |GF(qk)*| ≥ 23072

If k = 12, need 256-bit q (3072 = 12 × 256)
A BN curve can be used to implement this
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Parameters to get  comparable strengthsParameters to get  comparable strengths

PBCECCFFCBits of 
security

F = 512+
k × L ≥15360

f = 512+L = 15360
N = 512

256

F = 384-511
k × L ≥7680

f = 384-511L = 7680
N = 334

192

F = 256-333
k × L ≥ 3072

f = 256-333L = 3072
N = 256

128

f = 224-255
k × L ≥ 2048

f = 224-255L = 2048
N = 224

112

f = 160-223
k × L ≥ 1024

f = 160-223L = 1024
N = 160

80
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Selecting parametersSelecting parameters

Select bit security level
Determines size of p, k x log2q 

Select curve type
Supersingular curve or ordinary curve

• Select curve family if ordinary

Select curve
Select appropriate pairing
Select q
Find p so that E(GF(q)) has a subgroup of order p

Should be a Solinas prime for best efficiency
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SummarySummary

What is the Tate pairing?
What types of elliptic curves can be used to calculate 
pairings?
How can we calculate pairings faster?
What is the ate pairing?
What are the security implications for this?
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